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Abstract. We consider layered neural networb in which the weights are trained with the 
pseudoinverse rule to store a set of random patterns. Using many-body diagrammatic techniques, 
the evolution in the network can be described by the overlap order parameter m and the noise 
parmeter A. Lwping effects are shown to be significant, in contrast to a previous Conjecture 
Order parameter pairs corresponding to various input conditions are found to collapse on a 
universal CUNC 

1. Introduction 

In recent years, statistical mechanics has been successfully applied to the study of neural 
networks [I] .  The advantage of this approach lies in its ability to focus on simplifying 
but representative models which retain the gross features of biological and technological 
neural networks, whilst also allowing the macroscopic description of many-body physics. 
By considering the model of layered networks [2] trained with the pseudoinverse rule [3,4], 
this paper is an illustration of this approach, which quantifies the rich network dynamics 
by statistical parameters, uses many-body diagrammatic techniques, explores a new class of 
exactly solvable models and corrects a previous conjecture [2] .  

The dynamics of highly connected neural networks is complex. In fully connected 
networks the number of correlation parameters grows quadratically with time, restricting 
their study to the first few time steps [5]. Nevertheless, recent progress has been made in 
reducing the number of order parameters using a self-averaging and equipartitioning ansatz 
[6]. Up to now this qpplies to networks with local weight prescriptions such as the Hebb rule 
[7], but the non-local cases such as the pseudoinverse rule [3,4] or the maximum stability 
rule [SI remain unsolved. On the other hand, the dynamics of extremely dilute networks is 
also exactly solvable 191; since correlations beyond one time step are negligible, the small 
number of parameters facilitates its extensions to networks with various weight prescriptions, 
local and non-local included [lo]. 

Intermediate between the fully connected and extremely diluted architectures, the 
feedforward layered networks of Domany, Kinzel and Meir [2] resemble, on the one 
hand, the fully connected models in their full connectivity between successive layers and, 
on the other hand the widely applied multi-layer perceptrons [Il l  in their feedforward 
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nature. However, unlike the fully connected networks, in which the noise distribution is 
non-Gaussian because of their feedback nature 161, layered networks have Gaussian noise 
distributions [2], implying a more tractable treatment. Yet the presence of loops in the 
information path among consecutive layers produces a much more complex dynamical 
behaviour when compared with extremely diluted networks. Taking into account the 
Gaussian noise distribution and the looping effects, the evolution equations have been 
derived for layered networks in which the stored patterns are embedded by the Hebb rule, 
but layered networks w-ith more general weight prescriptions have not been studied. The 
purpose of this paper is to analyse the evolution of the pseudoinverse layered networks (PIL); 
results will be extended to networks with more general weight prescriptions in a future paper 
[12]. It is hoped that the present work will contribute to solving the dynamics of networks 
with general architecture and general weight prescriptions. 

While the replica method has been the popular approach in the theoretical study of 
macroscopic behaviours of neural networks and spin glasses [13], it is not as convenient as 
the diagrammatic approach [I41 in dealing with the microscopic correlations of patterns. In 
contrast to the replica method, which performs the pattern averaging procedure at an early 
stage and subsequently obscures the microscopic correlations, the diagrammatic approach 
performs the pattern averaging exlicitly term by term, rendering it convenient to compute 
pattern correlations by series summation. Diagrammatics are discussed in this paper, while 
the alternative replica approach will be published elsewhere [12]. 

As shown in this paper, the evolution in PIL can be described by the overlap order 
parameter m and the noise parameter A, analogous to the fully connected Hopfield network 
in the Gaussian approximation [ 151 and the self-averaging and equipartitioning ansatz [6], 
and the layered network with Hebbian weight precription [2]. Furthermore, looping effects 
are shown to be significant in PIL, in contrast to a previous conjecture [2]. Supported by 
Monte Carlo simulations, order parameter pairs corresponding to various input conditions 
are found to collapse onto a universal curve. 
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2. Formulation 

In the layered neural network there are N neurons on each layer, each may take the states 
Si(l) = f l ,  where I and i are the layer and neuron indices respectively. Below we employ 
the notation S(1) = ( S l ( l ) ,  . . . , SN(!)). Each neuron S,( l  + I )  is fed-by all neurons S,(l) 
on the previous layer through a set of weights Jtj(1). The network dynamics is then given 
by 

where h,(I + I )  = cj Jj( l )Sj( l ) .  fl  is the inverse temperature and, since generalization to 
non-zero temperature is straightforward, we focus on the case of zero temperature in this 
paper: 

Si(l + I )  = sgnhi( l  + 1). (2.2) 

The network dynamics is therefore feeding forward without recurrence. The layered network 
is assigned to retrieve p E aN sequences of patterns, labelled by { i c ( l )  = f l  for node 
i, layer 1 and pattern p.  To achieve this, the pattern informatior, has to be encoded 
in the weights J i j ( l )  through a learning process. The most direct (but not necessarily 
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the most efficient) weight prescription (or learning rule) is the Hebb rule. in which 
Ji,(Z) = xp &,,(I+ l ) C j p ( I ) .  and evolutionary equations have been derived [Z]. It has a low 
storage capacity of a, = 0.27, and the stored patterns cannot be perfectly retrieved even 
below the storage capacity. In this paper we consider another common weight prescription- 
the pseudoinverse rule [3,4]. It has an explicit algebraic form convenient for analysis, as 
shown by studies in fully connected networks 116-191. Its storage capacity is as high as 
ac = 1 ,  and perfect retrieval of patterns is possible. 

The pseudoinverse prescription is given by the condition that the aligning fileds are 
unity for all pattern bits labelled by i, p and I + 1 :  

J i j  W t j p ~  = tcr(l+ 11, 
j 

The solution to this equation is given by 

where Q(I) is the correlation matrix given by 

An input state S( 1) is presented to the input layer I = 1. Assuming that S(1) has a non- 
vanishing overlap m(1) with pattern 1 only, we are interested in monitoring the evolution 
of the overlap m( l )  in subsequent layers, given by 

(2.6) 

Separating the local field into a signal and noise term, we anive at 

where X i ( [  + 1) = { i l ( l  + 1) E, J d j ( l ) [ S j ( I )  - m(I) t j I ( l ) ]  is the noise term. For randomly 
chosen patterns on layer I + 1, the noise terms X i ( l  + 1) are independently distributed. 
Thus the noise has a Gaussian distribution with mean ( X i ( 1  + 1 ) ) i  = 0 and variance 
( X i ( l  + Substituting (2.3) into (2.7), and averaging over the Gaussian 
distribution of X, ( I  + l ) ,  we obtain 

= A(l). 

m ( l + I ) = e r f  - (2% 
The next step is to derive a recursion relation for A(I + 1) in terms of m(l )  and AV). 

As demonstrated in the Hebbian case [Z], a recursion relation in terms of m(l)  and A([) 
can then be used to describe the evolution of the macroscopic behaviour. Consider the 
expression for A(!): 

A(I) = ~ ( J i j ( I ) J i ~ ( I ) ) i [ s j ( l )  - m(@j1(01[&(0 - m(l) th l ( l ) l .  (2.9) 
ih 
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It can be divided into the j = k and j # k terms. For j = k, it was shown that [20] 
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(2.10) 

In extremely dilute networks, the term with j # k vanishes, because the probability of 
having a loop in the network structure is negligible, and the dynamical contributions at 
distinct nodes j and k are statistically independent. In the layered network, however, 
contributions from distinct j and k are correlated, since they receive input from all and the 
same nodes in the previous layer, forming multiple interlayer loops. Hence we have 

A([) = -[I -m(021 + C(Jij(I)Jix(l))i[s,(I) -~U)fi1U)1~&(0 - m ( O t ~ ~ ( O l .  01 

iP 1 - a  

(2.1 1) 

In the following section we will evaluate the weight correlation (J i j ( I )J ik( i ) ) i  using 
the diagrammatic approach, yielding a result proportional to the pattern correlation 
~ , ~ j , ( l ) & , ( l ) / N p .  This reduces the second term of (2.11) to an expression involving 
variables on layer 1 only-the same form which appeared in the analysis of the Hebbian 
case [2]. As demonstrated in section 4, the decomposition technique developed in the 
Hebbian case can then be generalized to obtain the recursion relation. 

3. The diagrammatic approach 

Using the explicit form (2,4) for the weights we have, for j # k, 

For random patterns on layer I + I ,  non-vanishing contributions come from terms with 
p = A, yielding 

1 
( J i j ( O J i k ( 0 ) i  tr(~)[Q(~)-Zl~.&.(~). (3.2) 

PV 

Since dependence on layer I + I has been averaged out, hereafter the layer label I will be 
omitted for convenience. The correlation matrix Q-' can be written as 

(3.3) 

Substituting the geometric series into (3.21, and expressing the correlation matrices in 
terms of their components (25 ) ,  an infinite series involving products of the pattern bits is 
obtained. Non-vanishing contributions are obtained by diagrammatic contractions and the 
resulting series conveniently re-summed to yield a simple form for (J i j ( l )J ix ( l ) ) i .  Similar 
manipulations have been encountered in the Adaline learning of the perceptron and the 
contraction rules can be generalized to our case [14]. We use a slanted line to represent a 
pattern bit, the top and bottom ends of the line corresponding to pattern label p and node 
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+ , ..... , 

Figure 1. (a) Diagrammatic expansion of (3.21, where (J i jJ i t ) i  = li%+,,uiI/am 
(-wN)-'(diagram); (b) pattern pairing in (3.4); (c) node pairing in (3.5): (d) diagrammatic 
expansion of (3.2) with pairings; (e) a crossing diagram; (0 the skeleton diagram; (g) the 
diagrammatic representations of C and D; (h) Lhe self-energies L and II for G and D 
respectively; (i) expressing L and n in terms of G and D. 

label j of pattern Eje, respectively. A factor of N-' is associated with the summation of 
a pattern or node label. Thus a matrix element Qeu is represented by two slanted lines 
connected at the bottom, sharing a common node label. -U' is represented by a circle. 
Thus (3.2) is given by lim,,o a/ao(-oN)-I acting on the series in figure l(a). 

We note that a pairing of pattern labels across a matrix element yield a factor 1 because 
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whereas a pairing of node labels across adjacent matrix elements yield a factor 01 because 
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Pattern pairings are represented by broken l ines  above the full lines as illustrated in figure 
I(b), and node pairings below as illustrated in figure l(c). The sum of figure l(a) over the 
unresbicted node and pattern labels reduces to the restricted set shown in figure I(d). 

Noting that ‘crossing’ diagrams (such as illustrated in figure ](e)) do not contribute in 
the thermodynamic limit (N >> 1) 1131, the diagrams in figure l(d) can be factorized into 
the skeleton diagram in figure l(f), corresponding to 

(3.6) 

where G is a ‘node propagator’ and D a ‘pattern propagator’ (in the language of manybody 
physics) as shown in figure IQ). G and D can be expressed via the Dyson-like equations 
as 

( 3 . 7 ~ )  
(3.76) 

where the ‘self-energy’ Z: contains all those diagrams with the leftmost node label paired 
with the rightmost node label, and with no other node labels in between (figure l(h)). It 
can therefore be expressed in terms of D (see figure l(i)): 

1 a 
= - C C j p 6 j P ( - w - ’ D )  = --D. w ( 3 . 8 ~ )  

Similarly, 

Eliminating the self-energies from ( 3 . 7 ~ )  and (3.7b), we have 

a G-’ = 1 + --D 
I,, 

(3.8b) 

. 
( 3 . 9 ~ )  - 
(3.9b) 

G D-’ = 1 +-. 
w 

Substituting the solutions into (3.6), we finally arrive at 

(3.10) 

It is interesting to compare this result with the Hebbian case, in which (J;jJik)i /(J*)i  
= E, (j,,,&JNp, whereas the present result has an extra factor of I - 2or. The similanty 
is a consequence of the assumption that the pattern bits on the different nodes i in the layer 
I + 1 are random variables independent of each other and of layer 1 .  Hence the averaging 

r! 
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over i reduces to terms involving patterns on layer 1 only. The specific weight prescription 
only affects the magnitude macroscopically. yielding factors of 1 and 1 -2or for the Hebbian 
and pseudoinverse rules respectively. 

An interpretation of the factor I - 2a can be made by squaring (2.3): 

Averaging over i and separating terms with j = k and j # k, we obtain 

(3.1 I)  

(3.12) 

Assuming the form (J ; j J ;k) i  = a  C,, tjp<kkp/Np and employing (2.10), the result (3.10) is 
recovered. Equation (3.12) means that, for ~ 1 :  < 1/2. the weight vector has a magnitude 

JG = a / ( l  - a) < I .  To stabilize the patterns with the aligning field I ,  the correlation 
(JjjJix); has to be positive. On the other hand, the weight magnitude is greater than 1 and 
( J i j J i k ) i  becomes negative. At cf = 1/2 the correlation ( J ; j J , k ) i  vanishes and, as shown 
in the next section, looping effects are absent reducing the dynamical equations to those of 
dilute asymmetric networks. 

4. The recursion relations 

To obtain a recursion relation for the noise A, we substitute (3.10) into (Z.ll), giving 

cf A = -[I - m2 + (1 - Z c f ) I ]  (4.1) 1 -a 

where I is the term accounting for the effects of interlayer looping given by 

Since the recursion relation for m has been derived in (2.8), it is sufficient to consider the 
recursion relation for 1. Hereafter primed and unprimed variables correspond to layers 1 + 1 
and I ,  respectively. 

1 I’ = - t~,tj,t;,t~,,[sgn(m + xj) - m’l[sgn(m + x;) - “1. (4.3) 
Np J#k8 

For pattern /I = 1, the contribution to I‘ vanishes to order O(No). For each pattern ~r. z 1, 
the above summation is performed by the decomposition technique of [2]. Let be the 
value of Xj if E,’@ were set to zero. Then 

1 xj = x;!” + C ~ j 1 t ~ ~ ~ ~ - ’ ~ , , t V ( ~ ~  - m t l )  (4.4) 
I” 

and therefore 

sgn(m + x;) = sgn(m + x;\”) + 2 ~ ( m  + X;’’)N 1 ~ ~ l t ~ e ~ ~ - l ~ r v ~ i , ( ~ t  - mtit). (4.5) 
I” 
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Substituting into (4.3) and summing over pattern p, the only non-vanishing term is 

K Y M Wong et a1 

(4.6) 

Adding the negligible contributions of j = k and /I = I ,  and noting that Xi\K 
lowest order, this reduces to 

X j  to the 

In the first bracket, X,! is a Gaussian variable of variance A. The term in the second bracket 
can be reduced to A / a  using (29) and (3.2). This results in the looping term 

In summary, the recursion relations for the PIL is given by 

\ Y  &.y, 

(4.8) 

(4 .9~)  

(4.9b) 

At the input layer, no looping effects are present, and A(1) = (1 - m ( l ) 2 ) a / ( l  - a). 
Knowing m(1)  and A(l),  the parameters in the subsequent layers can be obtained iteratively. 

These recursion relations are different from the conjecture of [2 ]  that the parameter 
evolution is identical to the case of dilute asymmetric pseudoinverse networks, in which the 
looping effects are neglected. 

5. Results 

Figure 2 shows the evolution of the overlap given by the theory for various initial conditions. 
For sufficiently high initial overlaps, the network converges to the perfectly retrieved state 
of pattern 1 after a few layers, whereas for low initial overlaps the network converges to 
the non-retrieval state with vanishing overlap. Note that in the case of non-retrieval the 
overlap increases from the input layer to the second layer before monotonically decreasing 
in subsequent layers, since looping effects have not developed in the second layer. This 
transient behaviour is also present in the Hebbian layered networks [ 2 ] ,  but absent in dilute 
asymmetric networks [IO]. It indicates that a single parameter, namely the overlap m, is not 
sufficient to describe the evolution, in conmst to the cases of dilute asymmetric networks 
and the conjecture of [ 2 ]  for layered networks. 

The theory is compared with Monte Carlo simulations. For initial states well inside the 
basin of attraction of the retrieval state or non-rehieval state, simulations agree with the 
theory very well. For initial states near the basin boundary, the agreement extends to the 
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a6 - 

0.4 . 
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Figure 2. The evolution of the overlap for (I = 0.2 s t d g  with various initial overlaps. The 
full and broken curves correspond to the theory and Monte Carlo simulations, respectively. 
Depending on the extent of finite-size effects, nelworks with 200. 400 and 8M) nodes are used 
in simulations, represented by circles. squares and diamonds. respectively. 600, 150 and 40 sets 
of random panems m pnemed  respectively for each value of initial overlap, and 500 initial 
mnfigumtions are used for each set. Enor bars are smaller than lhe size of the symbols. 

d . 4  lN=4Wl 
mm;0.3(N;8WJ 
rm;02 ("1 on - 

4 

0.4 - 

----.A .... *... 
0.2 - 

0.0 0.2 0.4 0.6 0.8 1.0 
m 

Figure 3. The univeml C U N ~ S  in the space of m and A for (I = 0.2. In figures 3 and 4. the 
broken and full CUNCS correspond to the first and subsequent hyeayers, respectively. 

first few layers, and finitesize effects become significant thereafter, but results extrapolated 
to infinite size agree with the theory. 

Figure 3 shows the trajectory of the parameter pairs (m,  A) for a given value of a. 
Eliminating parameters of the previous layer from the recursion relation (4.9a.b). we see 
that starting from the second layer, the parameters lie on the universal curve 

On the other hand, the parameters for the input layer lie on the universal curve 
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a 
A = -(I - mZ). 1 -a (5.2) 

Results from Monte Carlo simulations for various layers and initial overlaps are also 
presented in figure 3. Data for the input layer lie on the universal curve (5.2), and those 
for subsequent layers lie on the universal curve (5.1). This further supports the theory that 
looping effects are important in PIL, and invalidates the conjecture of 121, which predicts 
that data for all layers should fall on the universal curve (5.2). 

Figure 4 shows the universal curves and simulation data for a value of a > 1/2. Note 
that since the looping term is negative for a > 1f2, the universal curve (5.1) lies inside 
(5.2). 

m 

Figure 4. The universal curves for (I = 0.7. 

Figure 5. The bz in  and t m i e n l  boundvies in the space of the storage level a and initial 
overlap ,“( I ) ,  represented by full and broken curves respeclively. Simulation results are shown 
in circles and squares for Lhe basin and tmnsienl boundvies respectively. 
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Figure 5 shows the phase diagram in the space of a and initial overlap m ( l ) .  The 
basin boundary separates the retrieval phases on the high m ( l )  side from the non-retrieval 
phases on the low side. When 01 approaches zero, the initial overlap on the basin boundary 
vanishes linearly with a: 

(5.3) 

When a approaches the storage capacity ac = I ,  m ( l )  at the basin boundary approaches I .  
The fully connected pseudoinverse network has a similar phase diagram [16.17]. 

We have also shown in  figure 5 the basin boundary line conjectured in [2].  Since it 
still describes the correct evolution from the input to second layer, we rename this line the 
transient boundary. The basin and transient boundaries divide the phase space into four 
regions: (i) for high m( l )  and low a, the overlap monotonically increases; (ii) for low m(1) 
and low a, the overlap increases for one layer and then monotonically decreases; (iii) for 
low m(1) and high U, the overlap monotonically decreases; (iv) for a narrow region of high 
m( l )  and high a, the overlap decreases for one layer and then monotonically increases. All 
four behaviours are observed in simulations, although in the last case the result is obscured 
by the small area of this phase and the masking finite-size effects. Simulation results of the 
basin and transient boundaries agree with the theory. 

6. Conflusion 

We have studied the parameter evolution in layered networks storing patterns with the 
pseudoinverse rule. The explicit algebraic form of this rule facilitates the derivation of 
the evolution equation using the diagrammatic method, which involves an overlap m and 
a noise A. The parameters lie on a universal curve for various initial conditions and a 
given storage level, and correct a previous conjecture which neglects looping effects [2]. 
Despite the non-local nature of the pseudoinverse rule, we note that this is the same set 
of parameters used to describe the dynamics in the case of the local Hebb rule in layered 
networks [Z] and the fully connected networks in the Gaussian approximation [I51 and the 
self-averaging and equipartitioning ansatz 161. They also form a subset of the parameters 
describing the dynamics of fully connected networks with the pseudoinverse rule [18,19]. 

It is possible to generalize the study to the cases of correlated patterns [14], multi-state 
and continuous patterns 1211, non-zero temperature, static synaptic noise, random dilution 
and nonlinear synapses [Z] and to investigate pattern selectivity [22]. It is also possible to 
consider the activity distribution of the network, in which the neuronal states are averaged 
over an ensemble of input patterns [23]. The procedure of 'activity clipping' is shown to 
give perfect retrieval for all layers over a wide range of storage levels in the PIL. 

Generalization to other non-local learning rules such as the maximally stable network [SI 
is more difficult, since no explicit algebraic form of such rules are available. However, recent 
progress in the cavity analysis of the class of optimal learning rules shows that the weights 
can be expressed in terms of the cavity fields [24], and the parameter evolution equations 
can be derived accordingly [ 111. The present step is a significant step towards understanding 
the dynamics of networks with non-local learning rules, having layered as well as general 
structures, including the important example of the widely applied 'backprop' networks. We 
have demonstrated that many-body physics have the necessary tools to understand them. 
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